¹³C(⁶Li,d) **1978Ar15** - 1970Be31: The 13 C(6 Li,d) and 13 C(7 Li,t) reactions were studied at the University of Pennsylvania tandem accelerator using 18-MeV 6 Li and 17-MeV 7 Li ion beams bombarding a self-supporting, $60\pm14~\mu g/cm^2$ thick 13 C target. Reaction deuterons and tritons were momentum analyzed in a spectrograph over an angular range θ =3.75°-172.5°. Fifteen energy levels below E_x =8.5-MeV were deduced from the angular distributions. Transitions to negative-parity states at E_x =3.06, 3.85, and 4.55 MeV are the strongest when compared with those from the 12 C(7 Li,t) and 12 C(6 Li,d) reactions leading to the first K=0, 16 O rotational band. Strong transitions were also observed at E_x =7.38, (8.46,8.49), (8.87,8.95), and (9.14,9.20) MeV. - 1970Go29: Beam of $^6\text{Li}/^7\text{Li}$ from the cyclotron of the Kurchatov Atomic Energy institute at E=25.6 MeV/30.1 MeV impinged on a self-supporting carbon foil (0.4 mg/cm², 75% ^{13}C isotope enriched). The reaction products were detected and identified with a $\Delta E/\Delta X$ -E counter telescope. The energy spectra were analyzed using a multidimensional analyzer. The angular distributions of deutrons were obtained at θ =0°-45°. States at $^{17}\text{O*}(0,0.87,3.06,3.85,4.56,7.56,8.88 \text{ MeV})$ were observed. The group of levels in the energy range E_x =5.0-6.4 MeV were masked by the ^{12}C impurity in the target and not observed. The J^π value of the $^{17}\text{O*}(7.56 \text{ MeV})$ state was determined as $9/2^-$. The hypothesis of the weak binding of the four particles in the sd shell and of several holes in the p shell is confirmed. - 1978Ar15: E(6 Li)=26, 29, and 34 MeV ion beams bombarded a 0.1-0.35 mg/cm² carbon film (70% 13 C, 30% 12 C) at the Kurchatov Institute of Atomic Energy. Deuterons were measured by a Δ E/ Δ X-E telescope that was placed at θ_{lab} =8° with respect to the beam direction. Alpha particles were detected by 4 surface-barrier detectors (\approx 100 μ thick). A series of excited states of 17 O with large reduced α -particle widths was found. - 1978Cl08: An ion beam of 6 Li or 7 Li at E=34, 36 MeV, produced at the Florida State University/FN tandem Van de Graaff accelerator, impinged on 100 μ g/cm² thick 13 C targets (enriched 99%). A Δ E-E telescope was used to detect particles with a subtended angle θ =0.2° with resolution 85 keV for tritons and 75 keV for deuterons. Angular distributions were measured at θ =5.0°-31.5°. Strongly populated excited levels of 17 O*(13.58 2: suggested J $^{\pi}$ =11/2 $^{-}$ or 13/2 $^{-}$ or both,14.86,18.17,19.24 MeV) were observed. - 1982Ta23: 13 C(6 Li,d), E=36,32,28 MeV; measured yield vs particle energy, $\sigma(\theta)$, fusion σ , breakup σ vs E; deduced reaction mechanism. Optical, simple breakup model analyses. - 1984Ca39: The 13 C(6 Li,d) 17 O* $\rightarrow \alpha + ^{13}$ C reaction was studied at the FN9 tandem Van de Graaff/the Centre d'Etudes Nucleaires de Saclay with an incident energy of E(6 Li)=34 MeV and a self-supporting, 157 μ g/cm² thick 13 C target. Deuterons were detected by a DE-E Si telescope placed at θ_{lab} =10° and the coincident α -particles were recorded by two DE-E Si telescopes covering the angular range 20°< θ_{lab} <157.5°. The excitation energies of 17 O*(8.47, 8.92, 9.87, 13.6, 14.25, 14.95, 16.1, 18.3 and 19.6 MeV) were recognized. - 1998Mu12: 13 C(6 Li,X), E(cm)=2.07-8.23 MeV; measured E γ , I γ ; deduced partial, total fusion σ . Statistical model analysis, Optical model, Incoming Wave Boundary Condition model and one-dimensional Barrier Penetration model calculations. - 2003Ka51,2003Ku03,2003Ku36: 13 C(6 Li,d), E=60 MeV; measured deuteron spectra, σ (E, θ); deduced spectroscopic factors, subthreshold state contribution, optical potential parameters. - 2012La29: XUNDL dataset compiled by TUNL, 2012. - A beam of E=7.82 MeV 6 Li ions impinged on a 53 μ g/cm² 99% enriched 13 C target at the Florida State University accelerator facility. An array of five 5 cm×1 cm position sensitive Si detectors measured 16 O and deuterons from the reaction. - Three broad groups, corresponding to $^{17}\text{O*}(6356)$, $^{17}\text{O*}(7165,7248)$ and $^{17}\text{O*}(7378,7381)$ are populated in the reaction. Data are analyzed via an R-matrix analysis; the parameters of the higher-lying states are adjusted to reproduce values given in 2008He11. The Asymptotic Normalization Constant, ANC= $6.7^{+0.9}_{-0.6}$ fm⁻¹ is deduced for the 6356 keV J^{π}=1/2⁺ state. Discussion on the astrophysical reaction rate and impact of the E_x=6356 keV (α ,n) subthreshold resonance is given. #### Theory: 2003Ke10: 13 C(6 Li,d), E=60 MeV; analyzed σ (E, θ). 17 O deduced spectroscopic factors. DWBA and coupled reaction channels analysis, comparison with previous results, astrophysical implications discussed. See also (2018Ke03). ### ¹⁷O Levels | E(level) [†] | Jπ‡ | <u>L</u> ‡ | Comments | |-----------------------|-------------|------------|---| | 0 | | 3 # | | | 871 | | 1# | | | 3055 | $(1/2^{-})$ | 0 | L: See also (1970Go29,2003Ka51,2003Ku03). | | 3843 | $(5/2^{-})$ | 2 | L: See also (1970Go29,2003Ka51,2003Ku03). | | | | | | ## ¹³C(⁶Li,d) **1978Ar15** (continued) # ¹⁷O Levels (continued) | E(level) [†] | J^{π} ‡ | Γ^{\ddagger} | L [‡] | Comments | |------------------------------------|---|-----------------------------------|---------------------|--| | 4554
5085
5216 | (3/2 ⁻) | | 2 | L: See also (1970Go29,2003Ka51,2003Ku03). | | 5697
5733
5869
5939 | | | | Unresolved (1970Be31,2003Ka51,2003Ku03,2003Ku36).
Unresolved (1970Be31,2003Ka51,2003Ku03,2003Ku36).
Unresolved (1970Be31).
Unresolved (1970Be31). | | 6356 | | 83 keV +9-12 | 1@ | $\Gamma \approx 83 \text{ keV } +9-12, \ \Gamma \approx \Gamma_n \ (2012\text{La}29).$ $ANC^2 = 6.7 \text{ fm}^{-1} +9-6 \ (2012\text{La}29).$ The results of $(2003\text{Ka}51,2003\text{Ku}03,2003\text{Ku}36)$ indicate $S_{\alpha}(6.356)/S_{\alpha}(3.055) = 0.044.$ See also $S_{\alpha} = 0.36-0.40$ for N=4 $(2003\text{Ke}10)$: calculated values in Table 3). | | 6862
6972 | | | | | | 7165 ^{&} | 5/2 ^{-&} | 1.88 & keV | | Γ_n =1.88 keV Unresolved (2003Ka51,2003Ku03,2003Ku36). | | 7248 <mark>&</mark> | 3/2+& | 340 & keV | | $\Gamma_{\rm n}$ =340.1 keV; $\Gamma \alpha$ =0.14 keV
Unresolved (2003Ka51,2003Ku03,2003Ku36). | | 7378 <mark>&</mark> | 5/2+& | 0.42 ^{&} keV | | $\Gamma_{\rm n}$ =0.41 keV; $\Gamma \alpha$ =0.011 keV | | 7381 & | 5/2-& | 1.77 & keV | (4) | $\Gamma_{\rm n}$ =1.77 keV J^{π} : See also (9/2 ⁻)? (1978Ar15). | | 7559 | A | | · a | | | 7576
7688
7757
8200 | 9/2 ^{-a} | | 4 ^a | Unresolved (1970Be31,1978Cl08).
Unresolved (1970Be31,1978Cl08). | | 8466
8501
8687 | 7/2+ | 7 keV <i>3</i> | 3 | Unresolved (1970Be31,1978Cl08).
Unresolved (1970Be31,1978Cl08). | | 8885
8897
8967
9150 | 7/2- | 6 keV | 4
4 ^a | Unresolved (1970Be31). Unresolved (1970Be31,1978Cl08). Unresolved (1970Be31,1978Cl08). Unresolved (1970Be31). | | 9180
9187 | 7/2- | 3 keV | 4 | Unresolved (1970Be31). | | 9976 | 7/2+ | 107 keV | 3 | | | 10168
11815
12400
13300? | 5/2+ | 138 keV | 3 | | | 13.58×10 ³ <i>b</i> 2 | $(11/2^-, 13/2^-)^{ab}$ | 200 keV | 6 | Γ: From (1978Ar15).
E(level): See also 13.6 MeV <i>I</i> (1978Ar15).
J ^π : 13/2 ⁻ is preferred in (1978Ar15) based on expected systematics. | | 14.15×10 ^{3‡} 10
14760 | (9/2+,11/2+) | 200 keV | 5 | J^{π} : (11/2 ⁺) is slightly preferred in (1978Ar15). | | 15.1×10 ^{3‡} <i>I</i> | (9/2+,11/2+) | 0.38 MeV <i>15</i> | 5 | E(level): 15.0 MeV I at E(6 Li)=26 MeV, 15.15 MeV I 5 at E(6 Li)=29 MeV.
Γ : 0.37 MeV I 5 at E(6 Li)=26 MeV, 0.40 MeV I 5 at E(6 Li)=29 MeV. | | 1505 103+ 1- | (0.10± 1.1.10±) | 40 402 | _ | J^{π} : 11/2 ⁺ is preferred in (1978Ar15). | | $15.95 \times 10^{3 \ddagger} 15$ | $(9/2^+,11/2^+)$ | $4.0 \times 10^2 \text{ keV } 15$ | 5 | J^{π} : 9/2+ is preferred in (1978Ar15). | | 16.60×10 ^{3‡} 15 | (11/2 ⁻ ,13/2 ⁻) | | 6 | J^{π} : 11/2 ⁻ is preferred in (1978Ar15). | Continued on next page (footnotes at end of table) ### ¹³C(⁶Li,d) **1978Ar15** (continued) ## ¹⁷O Levels (continued) | E(level) [†] | $\mathrm{J}^{\pi \ddagger}$ | Γ^{\ddagger} | L‡ | Comments | |---------------------------|-----------------------------|---------------------|----|---| | 17.10×10 ^{3‡} 15 | $(11/2^-, 13/2^-)$ | | 6 | J^{π} : 11/2 ⁻ is preferred in (1978Ar15). | | 19.60×10 ^{3‡} 15 | $(13/2^+, 15/2^+)$ | 250 keV | 7 | J^{π} : 15/2 ⁺ is preferred in (1978Ar15). | | 20.20×10^{3} 15 | $(13/2^+, 15/2^+)$ | 250 keV | 7 | J^{π} : 15/2 ⁺ is preferred in (1978Ar15). | | 21.2×10^{3} ‡ | $(13/2^+, 15/2^+)$ | | 7 | J^{π} : 13/2 ⁺ is preferred in (1978Ar15). | | 22.1×10^{3} ‡ | | | | | [†] Observed in (1970Be31, 1970Go29, 1978Ar15, 1978Cl08, 1984Ca39, 2003Ka51, 2003Ku03, 2003Ku36). See nominal level energy values listed in, for example, (1978Cl08). $\gamma(^{17}O)$ | E_{γ}^{\dagger} | E_i (level) | \mathbf{J}_i^{π} | \mathbf{E}_f | |------------------------|---------------|----------------------|----------------| | 871 | 871 | | 0 | | 2184 | 3055 | $(1/2^{-})$ | 871 | | 3843 | 3843 | $(5/2^{-})$ | 0 | $^{^{\}dagger}$ See (1998Mu12). [‡] From (1978Ar15) except where noted. [#] From (1970Go29,2003Ka51,2003Ku03). [@] From (2003Ka51,2003Ku03). [&]amp; Populated in (2012La29) using values from (2008He11). Γ_n , $\Gamma\alpha$ are also from (2008He11). ^a From (1970Go29). ^b From (1978Cl08). # ¹³C(⁶Li,d) 1978Ar15 # Level Scheme